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Abstract. Representation learning of knowledge graphs encodes entities and re-
lation types into a continuous low-dimensional vector space, learns embeddings
of entities and relation types. Most existing methods only concentrate on knowl-
edge triples, ignoring logic rules which contain rich background knowledge. Al-
though there has been some work aiming at leveraging both knowledge triples
and logic rules, they ignore the transitivity and asymmetry of logic rules. In this
paper, we propose a novel approach to learn knowledge representations with en-
tities and ordered relations in knowledges and logic rules. The key idea is to
integrate knowledge triples and logic rules, and approximately order the relation
types in logic rules to utilize the transitivity and asymmetry of logic rules. All en-
tries of the embeddings of relation types are constrained to be non-negative. We
translate the general constrained optimization problem into an unconstrained op-
timization problem to solve the non-negative matrix factorization. Experimental
results show that our model significantly outperforms other baselines on knowl-
edge graph completion task. It indicates that our model is capable of capturing
the transitivity and asymmetry information, which is significant when learning
embeddings of knowledge graphs.

Keywords: Knowledge graph, Logic rules, Non-negative matrix factorization,
Transitivity, Asymmetry

1 Introduction

Knowledge graphs (KGs) store rich information of the real world in the form of graphs,
which consist of nodes (entities) and labelled edges (relation types between entities)
(e.g., (Trump,PresidentOf,USA)). This sort of structured data can be interpreted by com-
puters and applied in various fields such as information retrieval [4] and word sense
disambiguation [2]. Although powerful in representing structured data, the symbolic
nature of relations makes KGs, especially large-scale KGs, difficult to manipulate. Pre-
dicting missing entries (known as link prediction) is of great importance in knowledge
graph. To do this task, vector space embeddings of knowledge graphs have been widely
adopted. The key idea is to embed entities and relation types of a KG into a continuous
vector space.

Many approaches have been proposed to learn embeddings of entities and relations,
such as TransE [5], NTN [22], HOLE [6], ComplEx [7], and so on. They, however, only
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focus on knowledge triples, ignoring rich knowledge from logic rules. Logic rules are
taken as complex formulae constructed by combining atoms with logical connectives.
To leverage logic rules in knowledge graph embeddings, [18–20] propose to utilize both
knowledge triples and logic rules for KB completion. In their works, however, logic
rules need to be grounded. Each rule needs to be instantiated with concrete entities. A
rule can be grounded into plenty of ground rules, since there are many entities connected
by the same relation type in logic rules. As a result, the works cannot scale well to
larger KGs since rules will be grounded with more entities. And also, they all neglect
the properties of transitivity and asymmetry of rules.

For example, suppose we have two rules: ”CapitalOf⇒ LocatedIn” and “Locate-
dIn ⇒ ContainedBy”, which indicates the relation that x is a capital of y implies an-
other relation that x is located in y, and the relation that x is located in y implies x is
contained by y. Provided that we know Paris is a capital of France from the knowledge
base, we can infer that Paris is located in France and contained by France as well,
according to the transitivity of rules. In addition, even though we know Paris is located
in France, we cannot infer that Paris is a capital of France according to the asymmetry
of rules: “CapitalOf⇒ LocatedIn” 6= “LocatedIn⇒ CapitalOf”.

To leverage the properties of transitivity and asymmetry of rules, we propose a novel
knowledge representation learning model to capture the ordering of relations, and infer
potential new relations based on the ordering of existing relations and properties of tran-
sitivity and asymmetry of rules. We integrate knowledge graphs, existing relations and
logic rules together to learn the knowledge graph embeddings. Logic rules are incorpo-
rated into relation type representations directly, rather than instantiated with concrete
entities. The embeddings learned are therefore compatible not only with triples but also
with rules, and the embeddings of relation types are approximately ordered. We call our
learning approach TARE, short for Embedding knowledge graphs based on Transitivity
and Asymmetry of Rules.

In the remainder of the paper, we first review previous work related to our work.
Then we formulate our problem and present our learning algorithm in detail. After
that we evaluate our approach by comparing our approach with exiting state-of-the-art
algorithms. Finally we conclude the paper with future work.

2 Related Work

Many works have made great efforts on modelling knowledge graphs. Some works
explain triples via latent representation of entities and relations such as tensor factor-
ization [29, 8, 9] and multiway neural networks [22]. The key of relational latent feature
models is that the relationship between entities can be derived from interactions of their
latent features. Many ways are discovered to model these interactions. RESCAL [29]
is a relational latent feature model which explains triples via pairwise interactions of
latent features. However, it requires a large number of parameters. TransE [5] trans-
lates the latent feature representations via a relation-specific offset. Both entities and
relations are projected into the same continuous low-dimensional vector space and re-
lations are interpreted as translating operations between head and tail entities. TransE
is efficient when modelling simple relations. To improve the performance of TransE on
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complicated relations, TransH [10], TransR [11] and TransD [17] are proposed. Unfor-
tunately, these models miss simplicity and efficiency of TransE. To combine the power
of tensor product with the efficiency and simplicity of TransE, HOLE [6] uses the cir-
cular correlation of vectors to represent pairs of entities. Circular correlation has the
advantage, comparing to tensor product, that it does not increase the dimensionality of
the composite representation. However, due to the asymmetry of circular correlation,
HOLE is unable to deal with symmetric relation. Complex [7] makes use of embed-
dings with complex value and is able to handle a large number of binary relations, in
particular symmetric and antisymmetric relations. Some works such as [30], [12], [31]
learn embeddings by sampling long paths(e0 → e1 → e2... → en) in KG. They learn
the transitivity of relation triples but not the transitivity of rules.

These models perform the embedding task based solely on triples contained in a
KG. Recent work put growing interest in logic rules. [18] tries to utilize rules via in-
teger linear programming or Markov logical networks. However, rules are modeled
separately from embedding models and will not help obtaining better embeddings. [19]
proposes a joint model which injects first-order logic into embeddings. This work focus
on the relation extraction task and created vector embeddings for entity pairs rather than
individual entities. As a result, relations between unpaired entities cannot be effectively
discovered. KALE-Joint [20] proposes a new approach which learns entity and relation
embeddings by jointly modelling knowledge triples and logic rules. However, all logic
rules need to be grounded in these works. Since each relation type is linked to plenty of
entities, each rule can be grounded into plenty of triples. The more original triples KG
have, the more triples grounded from rules need to be used for learning, keeping grow
exponentially. And thus they do not scale well to larger KGs. Also, the embeddings of
the relation types in rules are not ordered, and thus the transitivity and asymmetry of
logic rules are missed.

To address above issues, we propose a novel approach which learns embeddings by
combining logic rules with knowledge triples. Logic rules are incorporated into relation
type representations directly and the embeddings of relation types in logic rules are
approximately ordered to leverage the transitivity and asymmetry of rules.

3 Problem Definition

In this section, we give a formal definition of the problem. A knowledge graph G is
defined as a set of triples of the form (s, r, o). s, o ∈ E denote the subject and object
entity, respectively. r ∈ R denotes the relation type. E denotes the set of all entities and
R denotes the set of all relation types in G.

Create from G a set of logic rules: ra ⇒ rb (in form of (ra, rb)) denotes that ra
logically implies rb, which means that any two entities linked by relation ra should
also be linked by relation rb; ra ∧ rb ⇒ rc (in form of (ra, rb, rc)) denotes that the
conjunction of ra and rb logically implies rc: if e0 and e1 are linked by ra, e1 and e2

are linked by rb, then e0 and e2 are linked by rc. ra, rb, rc ∈ LR, where LR ⊆ R is
the subset of relation types observed in logic rules.

Our objective is to learn embeddings of entities, relations more precisely by ap-
proximately ordering the embeddings of relation types in logic rules, to predict relation
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types between entities. The embeddings are set in Rd and denoted with the same letters
in boldface.

4 Our Model

4.1 Restricted Triple Model(RTM)

In RTM, we aim to embed entities and relation types to capture the correlations between
them. The embeddings of relation types are restricted to be non-negative. Given two
entities s, o ∈ E , the log-odd of the probability of the truth of fact (s, r, o) is:

P (Ysro = 1|Θ) = σ(φ(s, r, o)) (1)

where σ(x) = 1/(1 + exp(−x)) denotes the logistic function that maps x to (0,1),
which is just the range of probability; φ() is the energy function which is based on
a factorization of the observed knowledges and indicates the correlation of relation r
and the entity pair (s, o). Θ = {ei}ne

i=1 ∪{rk}
nr

k=1 denotes the the set of all embeddings
ve, vr ∈ Rd of the corresponding model, ne and nr is the number of entities and relation
types in the given KG respectively. {Ysro}(s,r,o)∈Ω ∈ {−1, 1}|Ω| is a set of labels (true
or false) of the triples, where Ω ∈ E⊗R⊗E . Ysro = 1 if (s, r, o) is positive. Otherwise,
Ysro = −1.

The energy function φ(s, r, o; Θ) in our model is based on existing model Complex
[7], in which complex vectors ve, vr ∈ Rd are learned for each entity e ∈ E and each
relation type r ∈ R. It models the score of a triple as:

(2)

φ(s, r, o) = Re(〈rso〉)

= Re(

d−1∑
i=0

risioi)

=

d−1∑
i=0

Re(ri)Re(si)Re(oi) +

d−1∑
i=0

Re(ri)Im(si)Im(oi)

+

d−1∑
i=0

Im(ri)Re(si)Im(oi)−
d−1∑
i=0

Im(ri)Im(si)Re(oi)

where r, s, o are complex vector embeddings for relation types, subject and object
respectively.Re(x) and Im(x) represent the real part and imaginary part of the complex
vector embedding x, respectively. It separates the embedding vector into real part and
imaginary part to obtain the symmetric and antisymmetric relations. This function is
antisymmetric when r is purely imaginary (i.e.its real part is zero), and symmetric when
r is real.

To approximately order the relation types in logic rules, we constrain the real part
and imaginary part of the vector embeddings of relation types to be non-negative and re-
duce the problem to Non-negative Matrix Factorization (NMF). And also, non-negative
constraints make the embeddings interpretable. For most embedding methods, a critical
issue is that, we are unaware of what each dimension represent in embeddings. Hence,
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the dimensions are difficult to interpret. This makes embeddings like a black-box, and
prevents them from being human-readable and further manipulation. NMF learn em-
beddings with good interpretabilities. There are many ways to solve Non-negative Ma-
trix Factorization such as Multiplicative Update [25], Gradient based Update [23] and
Alternating Non-negative Least Squares [26, 27].

In our model, we adopt the approach which updates the embeddings based on gra-
dient. Translate the general constrained optimization problem into an unconstrained op-
timization problem. The embeddings of relation types are translated into unconstrained
complex vectors as follows:

Re(r) = Re(qa)(2), Im(r) = Im(qb)
(2) (3)

where qa and qb denote the vectors which are initialized randomly(not constrained to
be non-negative) and updated during learning ,x(2) denotes the element-wise square of
the vector x. In other words, Re(ri) = Re(qai)

2 and Im(ri) = Im(qbi)
2. Plug eq.(3)

into eq.(2) , we get a new energy function:

(4)
φ(s, r, o) =

d−1∑
i=0

Re(qai)
2Re(si)Re(oi) +

d−1∑
i=0

Re(qai)
2Im(si)Im(oi)

+

d−1∑
i=0

Im(qbi)
2Re(si)Im(oi)−

d−1∑
i=0

Im(qbi)
2Im(si)Re(oi)

We train the triples by minimizing the negative log-likelihood of the logistic model
with L2 regularization on the parameters Θ:

LK = min
Θ

∑
log(1 + exp(−Ysroφ(s, r, o))) + λ1‖Θ‖2 (5)

where λ1 is the regularization parameter.
The real part and imaginary part of complex vector q are both unconstrained. There-

fore, the novel objective function can be solved by applying Stochastic Gradient De-
scent (SGD) directly. The negative set of knowledges is generated by local closed world
assumption(LCWA) proposed in [28].

4.2 Approximate Order Logic Model(AOLM)

In AOLM, We aim to embed relation types to capture the ordering between relations.
We work on two kinds of logic rules: ra ⇒ rb and ra ∧ rb ⇒ rc. Since there is
no natural linear ordering on the set of complex numbers, we approximately order the
complex vector embeddings by ordering the real part and imaginary part of the embed-
dings respectively. For their vector representations we require that the component-wise
inequality holds:

ra ⇒ rb if and only if

d−1∧
i=0

Re(rai) 6 Re(rbi)

and

d−1∧
i=0

Im(rai) 6 Im(rbi) (6)
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and

ra ∧ rb ⇒ rc if and only if

d−1∧
i=0

Re(rai)Re(rbi) 6 Re(rci)

and

d−1∧
i=0

Im(rai)Im(rbi) 6 Im(rci) (7)

for all vectors with non-negative coordinates, where
∧

denotes the conjunction. Smaller
coordinates imply higher position: ra ⇒ rb if and only if all entries of the real part and
imaginary part of the vector embedding of ra are less than or equal to that of rb.

The penalty for an ordered pair (ra, rb) of a given logic rule ra ⇒ rb is defined as
follows:

(8)F (ra, rb) = ‖max(0, Re(ra)−Re(rb)) +max(0, Im(ra)− Im(rb))‖2

where max(0, x) returns the greater one by element between 0 and x.
Crucially, if ra ⇒ rb, F (ra, rb) = 0. F (ra, rb) is positive if ra ⇒ rb is not satisfied.

F (ra, rb) = 0 if and only if max(0, Re(ra) − Re(rb)) = 0 and max(0, Im(ra) −
Im(rb)) = 0. That is, the real part and imaginary part of the embeddings of ra is
less than or equal to that of rb respectively. This satisfies the condition in eq.(6), and
encourages the learned embeddings of relation types to satisfy the order properties of
transitivity and asymmetry. For transitivity, if ra ⇒ rb and rb ⇒ rc,

∧d−1
i=0 Re(rai) 6

Re(rbi) 6 Re(rci) and
∧d−1

i=0 Im(rai) 6 Im(rbi) 6 Im(rci), then F (ra, rc) = 0,
and thus ra ⇒ rc is satisfied. For asymmetry, if ra ⇒ rb,

∧d−1
i=0 Re(rai) 6 Re(rbi) and∧d−1

i=0 Im(rai) 6 Im(rbi), then F (ra, rb) >= 0, and thus rb ⇒ ra is not necessarily
satisfied.

For logic rule ra ∧ rb ⇒ rc the penalty for (ra, rb, rc) is:

(9)F (ra, rb, rc) = ‖max(0, Re(ra) ∗Re(rb)−Re(rc))
+max(0, Im(ra) ∗ Im(rb)− Im(rc))‖2

where ∗ denotes the element-wise multiplication of two vectors: [a ∗ b]i = aibi.
Similarly, if ra ∧ rb ⇒ rc, F (ra, rb, rc) = 0. F (ra, rb, rc) is positive otherwise.

F (ra, rb, rc) = 0 if and only ifmax(0, Re(ra)∗Re(rb)−Re(rc)) = 0 andmax(0, Im(ra)∗
Im(rb)−Im(rc)) = 0. That is, the multiplication of the real part and imaginary part of
the embeddings of ra and rb is less than or equal to that of rc respectively. This satisfies
the condition in eq.(7).

The set of all relation types in logic rules is the subset of all relation types in the
given KG. Therefore, the relation types in logic rules are translated similarly to eq.(3):

Re(ra|b|c) = Re(qa|b|c)
(2), Im(ra|b|c) = Im(qa|b|c)

(2) (10)

To learn the approximate order-embedding of relation types in logic rules, we could
use a max-margin loss. For rule ra ⇒ rb:

(11)LR = min
∑

(ra,rb)∈P

F (ra, rb) +
∑

(r′a,r
′
b)∈N

max(0, α− F (r′a, r
′
b))
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If the rule is ra ∧ rb ⇒ rc:

(12)LR = min
∑

(ra,rb,rc)∈P

F (ra, rb, rc) +
∑

(r′a,r
′
b,r

′
c)∈N

max(0, α− F (r′a, r
′
b, r
′
c))

where P and N denote the positive and negative sets of logic rules. If ra ⇒ rb, we
construct negatives by replacing rb in the consequent with a random relation r ∈ R. If
ra ∧ rb ⇒ rc, we construct negatives by replacing rc in the consequent with a random
relation r ∈ R. α ≥ 0 is a hyper-parameter of margin. F (ra, rb), F (ra, rb, rc) is the
penalty function score of positive logic rule, and F (r′a, r

′
b), F (r′a, r

′
b, r
′
c) is that of neg-

ative logic rule calculated by eq.(8) or eq.(9). This loss encourages positive examples
to have zero penalty, and negative examples to have penalty greater than a margin.

4.3 Global Objective

With both knowledge triples and logic rules modelled, embeddings are learned by min-
imizing a global loss over this general representation:

L = LK + λ2LR (13)

where LK is calculated by eq.(5) and LR is calculated by eq.(11) or eq.(12) . The
embeddings of relation types are constrained to be non-negative, and are translated
into unconstrained complex vector embeddings in loss function. Therefore, stochastic
gradient descent (SGD) in mini-batch mode and AdaGrad [13] for tuning the learning
rate can be used to carry out the minimization directly. Embeddings learned are able to
be compatible with both triples and logic rules. And the embeddings of relation types
in logic rules are approximately ordered to capture the transitivity and asymmetry of
rules.

Table 1. Complexity of our model and some other models

Model Space Time
TransE ned+ nrd ntd
TransR ned+ nr(d

2 + d) ntd
2

HOLE ned+ nrd ntlogd
Complex ned+ nrd ntd
KALE-Joint ned+ nrd ntd+ ngd

TARE ned+ nrd ntd+ nld

4.4 Discussions

Complexity. We compare our model with several state-of-the-art models in space and
time complexity. Table 1 lists the complexity, where d is the dimension of the em-
bedding vectors, ne, nr, nt, ng , nl is the number of entities, relations, triples, ground
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triples, logical rules respectively. It can be seen that our model does not significantly in-
crease the space or time complexity. Note that KALE-Joint [20] needs to ground rules
with entities, which further requires O(ngd)=O(nlnt/nrd) in time complexity, where
nt/nr is the averaged number of observed triples per relation. Our model only requires
O(nld) which is nr/nt of O(ngd) KALE-Joint required.

5 Experiments

5.1 Datasets and Experiment Settings

Datasets We evaluate our model on knowledge graph completion using two commonly
used large-scale knowledge graph datasets and a relational learning dataset:

WN36 WordNet is a large lexical database of English. Nouns, verbs, adjectives
and adverbs are grouped into sets of cognitive synonyms called synsets. It provides
short definitions and usage examples, and records a number of relations among these
synonym sets or their members. WordNet can thus be seen as a combination of dictio-
nary and thesaurus. The WN18 dataset is a subset of WordNet which contains 40,943
entities, 18 relation types and 151,442 binary triples. Since there are no logic rules
among all relation types in WN18, we first add the reversed relations into training set.
For example, * hypernym is the reversed relation type of hypernym. We add the
triple (e1, ∗ hypernym, e0) into training set according to the positive triple observed
(e0, hypernym, e1). Then we can find some rules in newly generated training set. We
create 14 implication rules.

FB15k Freebase is a large-scale and growing collaborative KG which provides gen-
eral facts of the real world. For example, the triple (Barack Obama, Spouse, Michelle
Obama) describes there is a relation Spouse between Barack Obama and Michelle
Obama. The FB15k dataset is a subset of Freebase which contains 14,951 entities, 1,345
relation types, and 592,213 triples. We use original training, validation and test set splits
as provided by [5]. We create 200 implication rules.

Countries The countries dataset provided by [14] consists of 244 countries, 22
subregions and 5 regions. Each country is located in exactly one region and subregion,
each subregion is located in exactly one region, and each country can have a number
of neighbour countries. We construct a set of triple relations from the raw data of two
relations LocatedIn and NeighborOf . We create 2 conjunction rules.

The statistics of WN36 and FB15k are listed in Table 2. Examples of rules created
are shown in Table 3.

Table 2. Statistics of WN36 and FB15k

Model entities relations train valid test rules
Wn36 40,943 36 282,884 5,000 5,000 14
FB15k 14,951 1,345 483,142 50,000 59,071 200
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Table 3. Examples of rules created

WN18
hyponym ⇒ * hypernym

member meronym ⇒ * member holonym
part of ⇒ * has part

FB15k
/award/award honor/award winner ⇒ /award/award nomination/award nominee

/location/country/administrative divisions ⇒ /location/location/contains
/ice hockey/hockey roster position/position ⇒ /sports/sports team roster/position

Countries
NeighborOf ∧ LocatedIn ⇒ LocatedIn
LocatedIn ∧ LocatedIn ⇒ LocatedIn

Experiment Settings We use a grid search among the following parameters: d ∈
{20, 50, 100, 150, 200}, n ∈ {1, 2, 5, 10}, a ∈ {1.0, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01},
λ1 ∈ {0.1, 0.03, 0.01, 0.003, 0.001, 0.0, 0.0003}, λ2 ∈ {0.1, 0.03, 0.01, 0.003, 0.001,
0.0, 0.0003}, m ∈ {2.0, 1.0, 0.5, 0.2, 0.05, 0.01} to find the optimal parameters, where
d denotes the embedding size of the vectors of the entity and relation type represen-
tations; n denotes the number of negatives sampled for per positive triple observed in
training set or logic rule; a denotes the initial learning rate which will be tuned during
AdaGrad; λ1 denotes the L2 regularization parameter, λ2 is the weight of logic rules,
and m is the margin between the positive logic rules and the negative logic rules.

5.2 Knowledge Base Completion

Knowledge base completion aims to complete a triple (s, r, o) when one of s, r, o is
missing. In the task of knowledge base completion, we compare our model with several
state-of-art models including TransE [5], TransR [11], HOLE [6], ComplEx [7] and
KALE-Joint [20]. The former four models only focus on knowledge triples, and KALE-
Joint learns embeddings by jointly modelling knowledge triples and logic rules. Rules
need to be grounded and are not ordered in KALE-Joint.

We evaluate the performance of our model with Mean Reciprocal Rank (MRR)
and top n (Hits@n) which have been widely used for evaluation in previous works.
Replace the subject or object entity of each triple (s, r, o) in the testing set with each
entity in the whole dataset: (s′, r, o) and (s, r, o′), where ∀s′,∀o′ ∈ E . Afterwards,
rank all candidate entities in the dataset according to their scores calculated by eq.(4) in
ascending order. Mean Reciprocal Rank (MRR) and the ratio of correct entities ranked
in top n (Hits@n) are the standard evaluation measures, which measure the quality of
the ranking. They fall into two categories: raw and filtered. The filtered rankings are
computed after filtering all other positive triples observed in the whole dataset, whereas
the raw rankings do not filter these. We report both filtered and raw MRR, and filtered
Hits@10, 3, 1 in Table 4 and Table 5 for the models.

It can be seen that TARE is able to outperform TransE, TransR, HOLE, ComplEx
on MRR and Hits@ on WN36 and FB15k. This demonstrates the effectiveness of joint
logic rules into knowledges. TARE largely outperforms KALE-Joint, with a filtered
MRR of 0.955 and 91.4% of Hits@1, compared to 0.662 and 85.5% for KALE-Joint.
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This demonstrates the effectiveness of considering the transitivity and asymmetry of
logic rules.

Table 4. KG Completion on WN36

MRR Hits@
Model Filter Raw 1 3 10
TransE 0.495 0.351 11.3 88.8 94.3
TransR 0.605 0.427 33.5 87.6 94.0
HOLE 0.938 0.616 93.0 94.5 94.9
Complex 0.941 0.587 93.6 94.5 94.7
KALE-Joint 0.662 0.478 85.5 90.1 93.0
TARE 0.955 0.545 91.4 94.2 94.7

Table 5. KG Completion on FB15k

MRR Hits@
Model Filter Raw 1 3 10
TransE 0.463 0.222 29.7 57.8 74.9
TransR 0.346 0.198 21.8 40.4 58.2
HOLE 0.524 0.232 40.2 61.3 73.9
Complex 0.692 0.242 59.9 75.9 84.0
TARE 0.781 0.292 61.7 72.8 84.2

5.3 Relational Learning

We test the relational learning capabilities of our model on the countries dataset. Most
of the test triples in the countries dataset can be inferred by directly applying logic rules
on the training set. However, to evaluate our model, we do not use the pure logical infer-
ence. we split all countries randomly in train (80%), validation (10%), and test (10%)
countries, then training, validation, and test set is composed of the relations which start
from all countries in the training validation, and test countries respectively.

Remove all triples of the form (c, LocatedIn, r) for each country c in the validation
and test set. In the new set S1, (c, LocatedIn, r) can be predicted by LocatedIn ∧
LocatedIn⇒ LocatedIn.

Based on S1, remove (c, LocatedIn, s) for all countries in the validation and test
set. In the new set S2, (c, LocatedIn, r) can be predicted byNeighborOf∧LocatedIn⇒
LocatedIn.

Based on S2, remove (cn, LocatedIn, r) for all neighbour countries cn of all coun-
tries in the validation and test set. In the new set S3 , (c, LocatedIn, r) can be pre-
dicted by NeighborOf ∧LocatedIn⇒ LocatedIn and LocatedIn∧LocatedIn⇒
LocatedIn.

The prediction quality is measured by the area under the precision-recall curve
(AUC-PR), we compute the mean AUC-PR after 10 fold cross-validation. The results
are shown in Table 6. It can be seen that our model performs well in this task. It achieves
13.4% improvement on S2 and 19.3% improvement on S3.

6 Conclusion and Future Work

In this paper, we propose TARE model for representation learning of knowledge graphs
by integrating existing relations and logic rules together. Logic rules are incorporated
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Table 6. Link prediction on Countries dataset

Model S1 S2 S3

Random 0. 323 0. 323 0. 323
Frequency 0. 323 0. 323 0. 308
ER-MLP 0. 960 0. 745 0. 650

Rescal 0. 997 0. 745 0. 650
HOLE 0. 997 0. 772 0. 697
TARE 0.994 0.906 0.890

into relation type representations directly, rather than instantiated with concrete entities.
We model logic rules by approximately ordering the relation types in logic rules to
leverage the transitivity and asymmetry of rules, and thus obtain better embeddings
for entities and relation types. To be ordered, the vector embeddings of relation types
are constrained to be non-negative, the general constrained optimization problem is
translated into an unconstrained optimization problem in our model. In experiments,
we evaluate our models on knowledge base completion and relational learning tasks.
Experimental results show that TARE brings significant and consistent improvements
over exiting state-of-the-art methods.

For future work, we would like to explore the following research directions: (1)more
complex types of logic rules such as ¬ and ∨ would be modelled to obtain better per-
formance. (2) logic rules can be extracted from text. There is richer information in text
than triples, more logic rules can be obtained if we joint the information in text. (3)
TARE only consider the order of relation types, the order over entities would also be
helpful to obtain better embeddings.
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